

UK Water Shortage 2050

Water Scarcity in the UK: Risks and Resilience

White Paper | November 2025

www.tricelwater.co.uk

Executive Summary

The United Kingdom is entering a critical juncture in its management of water resources. Once perceived as a nation of abundant rainfall, the UK now faces a mounting challenge: water scarcity driven by the converging pressures of climate change, population growth, and the demands of industrial decarbonisation.

The Environment Agency warns of a potential daily shortfall of 3.4 billion litres across England, even before accounting for new industrial demand. Decarbonisation pathways add significant pressure: Durham University estimates up to 860 million litres per day of additional water demand from hydrogen production and carbon capture, utilisation, and storage (CCUS).

Without decisive action, these forces will outpace current resource plans, leaving households, businesses, and critical services exposed to supply interruptions, declining water quality, and higher system costs.

The national challenge

- Climate volatility: Hotter, drier summers, shifting rainfall patterns, and more intense storm events reduce reliable yields from surface and groundwater sources while increasing peak demands.
- Population and economic growth: Urbanisation concentrates demand in already constrained catchments, raising the risk of localised deficits and network stress.
- Industrial decarbonisation: Hydrogen and CCUS clusters, power system flexibility assets, and low-carbon manufacturing increase process-water and cooling needs, often in water-stressed regions.

This whitepaper explores the scale and urgency of this issue, evaluates the vulnerabilities in national water infrastructure, and outlines regulatory developments and decentralised approaches that can support resilience and compliance in the decades ahead. It explores the policy and technological responses required to ensure resilience by mid-century.

Key Highlights

Key Highlights: UK Water Scarcity 2050

Escalating Challenge

• The UK faces a projected daily shortfall of 3.4 billion litres by mid-century, driven by climate change, population growth, and industrial decarbonisation.

Climate Disruption

 Hotter summers, shifting rainfall, and extreme weather will reduce river flows and groundwater recharge, increasing drought severity and flood risks.

Population Pressure

 England's population is expected to surpass 71 million by 2055, concentrating demand in water-stressed regions like London and the South East.

Industrial Demand Surge

• Net-zero initiatives—hydrogen production and carbon capture—could add up to 860 million litres per day in water use, creating regional deficits as early as 2030.

Infrastructure Weaknesses

 Ageing assets, high leakage rates (3 billion litres lost daily), and limited interregional transfer capacity expose systemic vulnerabilities.

Economic Impact Analysis

 Water scarcity could cost £2 billion annually across agriculture, energy, and manufacturing, reduce GDP growth by 0.3% per year, and drive inflationary pressures without urgent intervention.

International Benchmarking

• Lessons from Australia, Singapore, California, and Israel show the benefits of desalination, advanced recycling, tiered pricing, and public engagement—strategies the UK can adopt to accelerate resilience.

Regulatory Overhaul

 Stricter discharge limits for phosphorus, tighter microbiological standards, and frameworks such as PR24 and AMP8 link compliance to financial and legal consequences.

Strategic Planning

 National frameworks prioritise leakage reduction, water efficiency, and new supply options including reservoirs, desalination, and advanced recycling.

Tricel's Contribution

 Tricel delivers modular water storage, pumping, stormwater management, and wastewater treatment systems—supporting decentralised resilience and regulatory compliance.

Contents

Executive Summary	02
Key Highlights	03
01. Climate Change and Hydrological Disruption	05
02. Population Growth and Urbanisation	09
03. Industrial Decarbonisation and Water Demand	11
04. Infrastructure Vulnerabilities	13
05. Regulatory Landscape and Policy Shifts	15
06. Economic Impact Analysis	17
07. International Benchmarking:	18
08. Strategic Responses and Future Planning	19
09. Engineering Resilience: Tricel's Integrated Water Systems	21
Conclusion	34
References	35
FAQ: Water Scarcity in the UK by 2050 – Risks, Responses, and Tricel's Solutions	36
Glossary	38

1. Climate Change and Hydrological Disruption KEY TAK

1.1 Climate Change and Hydrological Disruption

Climate change is fundamentally altering the hydrological landscape of the United Kingdom. Once considered a temperate and waterabundant nation, the UK is now facing a future marked by increased variability in rainfall, prolonged droughts, and more frequent extreme weather events. These changes are not only affecting the availability of water but also the reliability of infrastructure and the ecological integrity of river systems.

KEY TAKEAWAY

Climate change is reshaping the UK's hydrological systems, leading reduced river flows. vulnerable groundwater reserves, and increased flood risks. These disruptions demand integrated, risk-based water resource planning that accounts for shifting rainfall patterns, infrastructure stress, interdependencies. and sectoral Scenario-based modelling confirms climate impacts availability surpass those of any single policy or economic factor, underscoring the urgency of adaptive strategies and resilient infrastructure investment.

1.2 Shifting Rainfall Patterns and River Flow Declines

Hydrological modelling conducted under the CS-N0W programme, commissioned by the Department for Energy Security and Net Zero (DESNZ), reveals that river flows across England are projected to decline significantly under future climate scenarios. These projections account for both natural climate variability and artificial influences such as abstraction and discharge.

These models are essential for understanding and predicting water availability, flood risks, drought conditions, and the effects of climate change on water systems. Hydrological modelling typically incorporates data on:

- Rainfall and evaporation
- · Soil characteristics and land use
- Topography and vegetation
- · River and stream networks
- Groundwater recharge and discharge

What is Hydrological modelling?

Hydrological modelling is the scientific process of simulating the movement, distribution, and quality of water within natural and engineered systems. It uses mathematical models to represent how water flows through the environment—across land surfaces, through rivers and lakes, and into underground aquifers.

Hydrological modelling conducted under the CS-N0W programme, commissioned by the Department for Energy Security and Net Zero (DESNZ), reveals that river flows across England are projected to decline significantly under future climate scenarios. These projections account for both natural climate variability and artificial influences such as abstraction and discharge.

1. Climate Change and Hydrological Disruption

Hydrological modelling studies—particularly those using the SHETRAN and Grid-to-Grid (G2G) models—have consistently shown that southern and eastern regions of England are most vulnerable to future reductions in river flow and prolonged drought conditions. These indications are derived from several key findings:

Physically-Based Modelling Results (SHETRAN)

A national-scale study using the SHETRAN model calibrated across 698 UK catchments found that river flows are projected to decrease on average across the UK, with the greatest reductions in the south and east. These regions are already characterised by lower annual rainfall and higher population density, which amplifies the pressure on water resources. The modelling also showed that droughts will become longer and more severe, particularly in these areas, due to reduced base flows and increased evapotranspiration under warmer conditions.

Climate Scenario Projections (UKCP18)

The SHETRAN and G2G models were driven by UKCP18 climate projections, specifically the high-emissions RCP8.5 scenario, which represents a worst-case pathway for global greenhouse gas emissions. These projections indicate seasonal shifts, with wetter winters and drier summers, leading to less reliable aquifer recharge and greater summer water deficits in the south and east.

Artificial Influence and Water Demand Scenarios (CS-NOW)

The CS-NOW programme, commissioned by the UK Department for Energy Security and Net Zero, incorporated future scenarios of water abstraction and discharge into its modelling. Under all scenarios—whether prioritising sustainability, business-as-usual, or economic growth—the southern and eastern catchments showed the highest risk of unmet water demand, especially during dry years when Hands-off-Flow (HoF) conditions restrict abstraction to protect ecosystems.

Drought Severity and Duration (eFLaG Dataset)

The eFLaG dataset, which includes projections for 200 river catchments and 54 groundwater boreholes, found that over 90% of UK catchments will experience increased drought severity, intensity, and duration by 2080. The south and east are particularly affected due to their hydrogeological characteristics, such as shallow aquifers and limited natural storage, which make them more sensitive to rainfall deficits.

1. Climate Change and Hydrological Disruption

1.3 Aquifer Recharge and Groundwater Vulnerability

Groundwater, which supplies up to 75% of public water in some regions, is particularly vulnerable to climate-induced disruption. Reduced winter rainfall limits aquifer recharge, while hotter summers increase evapotranspiration, further diminishing groundwater reserves.

What is Aquifer recharge?

Aquifer Recharge refers to the process by which water from precipitation, rivers, lakes, or other sources infiltrates the ground and replenishes underground water reservoirs known as aquifers. These aquifers are critical sources of freshwater for public supply, agriculture, and industry.

The Parliamentary Office of Science and Technology (POST) notes that these changes will reduce the resilience of water supplies and increase the risk of localised shortages.

Acquifer Recharge typically occurs when water percolates through permeable soil and rock layers until it reaches the saturated zone. The rate and volume of recharge depend on factors such as:

- **Rainfall patterns:** Consistent and moderate rainfall supports steady recharge, while intense storms may lead to surface runoff rather than infiltration.
- **Soil and geology:** Sandy or fractured rock formations allow easier water movement, whereas clay-rich soils may inhibit it.
- Land use: Urban development and impermeable surfaces (e.g. concrete) reduce natural infiltration and can disrupt recharge zones.
- **Vegetation:** Plant cover can enhance infiltration through root systems and reduce evaporation.

In the UK, aquifer recharge is most effective during winter months when evapotranspiration is low and rainfall is higher. Climate change is disrupting this seasonal balance, leading to reduced recharge and increased pressure on groundwater resources. Moreover, saline intrusion into coastal aquifers—exacerbated by sea-level rise—threatens the quality of groundwater sources. This is especially concerning for regions such as East Anglia and the South East, where reliance on groundwater is high and alternative sources are limited.

1.4 Increased Flood Risk and Infrastructure Stress

Climate change is also intensifying flood risk. Research by the UK Centre for Ecology & Hydrology and the Environment Agency shows that peak river flows are likely to increase under high-emission scenarios (RCP 8.5), particularly in western regions of Great Britain. This has significant implications for flood defence planning, urban drainage systems, and the siting of critical infrastructure.

1. Climate Change and Hydrological Disruption

Urban expansion and impermeable surfaces—often referred to as "urban creep"—compound the problem by reducing natural infiltration and increasing surface runoff. This leads to more frequent and severe flash flooding, especially in densely populated areas with ageing drainage networks.

1.5 Interdependencies and Systemic Vulnerabilities

Water availability is closely linked to other sectors, including agriculture, energy, and public health. For example, reduced river flows can impair cooling systems in power stations, while drought conditions can limit irrigation for crops. These interdependencies create systemic vulnerabilities that must be addressed through integrated planning.

The POSTbrief recommends a risk-based systems approach to water resource management, which considers trade-offs between stakeholders, ecosystems, and economic priorities. This approach enables more adaptive and resilient decision-making in the face of uncertainty.

1.6 Policy Implications and Planning Needs

The evidence underscores the need for robust, forward-looking policies that incorporate climate projections into water resource planning. Regional water resource plans must account for both reduced availability and increased demand, while infrastructure investments should prioritise flexibility and redundancy.

The CS-NOW programme highlights the importance of scenario-based planning, using artificial influence (AI) models to simulate different pathways for water demand and availability. These models show that climate change has a greater impact on water availability than any single economic or policy scenario, reinforcing the urgency of climate adaptation.

2.Population Growth and Urbanisation

The demographic trajectory of England presents a significant challenge to water resource management. According to projections from the Office for National Statistics, England's population is expected to exceed 71 million by 2055, with the most substantial growth concentrated in London and the South East. These regions already face considerable pressure on water infrastructure due to high population density, economic activity, and limited natural water availability.

2.1 Rising Demand Across Sectors

Population growth directly translates into increased demand for water across multiple sectors:

- **Domestic Use:** More households mean greater consumption for drinking, cooking, sanitation, and hygiene. The average person in England uses approximately 142 litres of water per day, a figure that is expected to rise with lifestyle changes and warmer temperatures.
- Agriculture: Expanding urban populations require more food, placing pressure on irrigation systems and agricultural water use, particularly in regions with limited rainfall.
- Industry and Services: Economic growth in urban centres drives demand for water-intensive services, including manufacturing, data centres, and healthcare facilities.

Without significant improvements in water efficiency and infrastructure, this rising demand risks outpacing supply, especially during dry periods or peak usage seasons.

2.2 Urbanisation and Infrastructure Stress

Urbanisation compounds the challenge by placing additional stress on ageing water infrastructure. Many cities rely on combined sewer systems, which collect both wastewater and stormwater. These systems are vulnerable to overflow during heavy rainfall, leading to pollution incidents and public health risks.

In addition, leaky distribution networks contribute to substantial water loss. Estimates suggest that up to 3 billion litres of water are lost daily in England and Wales due to leakage—equivalent to the daily water use of over 20 million people. Urban expansion often outpaces infrastructure upgrades, resulting in fragmented networks and inconsistent service delivery.

KEY TAKEAWAY

The UK's projected population growth accelerating urbanisation placing mounting pressure on water resources and infrastructure. demand across domestic, agricultural, and industrial sectors risks outpacing supply, while ageing and inefficient networks exacerbate water loss and pollution. Regional disparities further complicate planning, with densely populated areas facing acute challenges. Without coordinated investment and integrated planning, the may include consequences restrictions, ecological and economic disruption.

2.Population Growth and Urbanisation

2.3 Spatial Inequality and Regional Disparities

The impact of population growth is not evenly distributed. While London and the South East face acute supply-demand imbalances, other regions may experience different challenges, such as ageing rural infrastructure or limited investment in water resilience. This spatial inequality complicates national planning and requires tailored regional strategies.

2.4 Consequences of Inaction

If current trends continue without intervention, the mismatch between water supply and demand will grow. The consequences include:

- More frequent water restrictions: Hosepipe bans and rationing may become common during summer months.
- Ecological degradation: Overabstraction from rivers and aquifers can harm biodiversity and disrupt ecosystems.
- Economic disruption: Water scarcity can affect productivity, increase operational costs, and deter investment in high-demand sectors.

These risks underscore the need for integrated planning that aligns housing development, infrastructure investment, and environmental protection.

3.Industrial Decarbonisation and **Water Demand**

The UK's commitment to achieving net-zero carbon emissions by 2050 is reshaping the industrial landscape. Central to this transformation water-intensive are two technologies: hydrogen production and carbon capture and storage (CCS). While these essential innovations are for reducing greenhouse gas emissions, they introduce significant new pressures on the nation's already strained water resources.

3.1 National Decarbonisation Targets and **Water Implications**

The UK Government aims to produce 10 gigawatts (GW) of low-carbon hydrogen annually and capture 20 to 30 megatonnes (Mt) of CO₂ by 2030. These targets are ambitious and necessary, but they come with substantial water requirements:

- Producing 1 kg of hydrogen requires approximately 30 litres of water.
- Capturing 1 kg of CO₂ demands around 3 litres of water.

According to a study led by Durham University, the additional water demand from hydrogen production and CCS could reach 860 million litres per day by 2050, with a margin of error of ± 150 million litres.

This figure represents a significant increase in industrial water use and must be considered alongside existing public and agricultural demand.

Industrial decarbonisation in the UKdriven by hydrogen production and carbon capture-will significantly increase water demand, potentially straining regional supplies already technologies under pressure. With varying in water intensity and some regions facing critical deficits by 2030, strategic planning must align lowcarbon innovation with water resource management. Prioritising water-efficient technologies, enhancing recycling, and integrating adaptive infrastructure are essential to ensure that climate goals do not compromise water security.

3.Industrial Decarbonisation and Water Demand

3.2 Regional Impacts and Water Deficits

The study assessed five major UK water company regions—Anglian Water, Northumbrian Water, Severn Trent Water, United Utilities, and Yorkshire Water. It found that:

- Anglian Water and United Utilities are projected to face critical water deficits by 2030.
- Yorkshire Water is expected to encounter similar challenges by 2040.
- Other regions may maintain surplus capacity, but only with proactive planning and infrastructure investment

These regional disparities highlight the need for spatially targeted water management strategies that align industrial decarbonisation efforts with local water availability.

3.3 Water Intensity and Technology Choices

The water footprint of decarbonisation varies depending on the technology used:

- Blue hydrogen, produced from natural gas with CCS, has a higher water intensity than green hydrogen, which is generated via electrolysis using renewable electricity.
- CCS technologies also differ in their water use depending on the capture method and cooling systems employed.

To mitigate water stress, researchers recommend prioritising technologies with lower specific water intensity factors (SWIFs) and integrating advanced cooling and treatment systems.

3.4 Policy and Infrastructure

To ensure that industrial decarbonisation does not compromise water security, the following measures need to be considered:

- Enhance water recycling and reuse within industrial clusters.
- Establish regional desalination hubs to convert seawater for industrial use.
- Improve inter-regional water transfers to balance supply and demand.
- Strengthen collaboration between decarbonisation project managers and water utilities.
- Implement adaptive water management using real-time monitoring and predictive modelling.

3.5 Strategic Alignment with Climate Policy

The CS-N0W programme, commissioned by the Department for Energy Security and Net Zero, underscores the importance of integrating climate resilience into decarbonisation planning.

4.Infrastructure Vulnerabilities

The resilience of the UK's water supply is increasingly undermined by ageing infrastructure, fragmented networks, and limited capacity for inter-regional water transfers. These vulnerabilities are exacerbated by climate change, population growth, and the rising demands of industrial decarbonisation. Without strategic investment and coordinated planning, the nation risks systemic failures in water delivery, treatment, and environmental protection.

KEY TAKEAWAY

The UK's water infrastructure faces mounting vulnerabilities due to ageing assets, limited inter-regional transfer capacity, and increasing regulatory pressures. Climate change, population growth, and industrial decarbonisation are compounding these risks, exposing systemic weaknesses in water delivery and treatment.

Without strategic investment in maintenance, connectivity, and compliance technologies, the nation risks widespread service disruptions, environmental breaches, and long-term resilience deficits.

4.1 Ageing Assets and Deferred Maintenance

Much of the UK's water infrastructure was built in the mid-20th century and is now approaching or exceeding its design life. The Institution of Civil Engineers (ICE) warns that climate change is accelerating the deterioration of these assets, creating a "perfect storm" of risk across the water network.

Deferred maintenance has led to:

- Increased leakage rates, with over 3 billion litres lost daily in England and Wales.
- Structural vulnerabilities in pipelines, reservoirs, and treatment plants.
- Reduced operational efficiency and higher energy consumption.

The ICE's 2025 State of the Nation report calls for prioritising maintenance over new projects, noting that parts of the network "are perhaps not as safe as the public thinks" and that some structures "should have usage restrictions, but don't".

4.2 Limited Inter-Regional Transfer Capacity

Water availability varies significantly across the UK, with the South East and East of England facing chronic shortages while other regions maintain surplus capacity. However, the infrastructure to transfer water between regions is limited and outdated. The National Framework for Water Resources 2025, published by the Environment Agency, identifies this as a critical barrier to national resilience.

To address this, the RAPID programme—a collaboration between Ofwat, the Environment Agency, and the Drinking Water Inspectorate—has launched 28 strategic schemes to improve interconnectivity.

4. Infrastructure Vulnerabilities

These include:

- New reservoirs and desalination plants.
- Large-scale water recycling projects.
- Cross-regional pipeline networks.

Collectively, these schemes aim to deliver at least 1 billion litres per day, addressing one-fifth of the projected national shortfall by 2055.

4.3 Pollution, Permit Breaches, and Regulatory Enforcement

Infrastructure vulnerabilities also manifest in environmental non-compliance. Combined sewer overflows (CSOs), outdated treatment systems, and insufficient nutrient removal have led to widespread pollution incidents. Since 1989, English and Welsh water companies have faced:

- Over 1,100 criminal convictions.
- £160 million in fines for environmental breaches.
- £122.7 million fine for Thames Water in 2025, the largest in Ofwat's history.

The Environment Agency and Ofwat have intensified enforcement, with penalties now tied to performance metrics and shareholder returns. Permit breaches trigger automatic financial consequences, and investigations have expanded to cover over 2,200 sewage treatment works.

4.4 Capacity Constraints and Future Readiness

Many assets are not ready for future regulatory standards or climate conditions.

The ICE and Environment Agency highlight the need for:

- Quaternary treatment technologies to meet stricter discharge permits.
- Advanced monitoring systems for real-time compliance.
- Net-zero pathways for wastewater operations.

Without upgrades, water companies risk higher retrofit costs, reputational damage, and long-term compliance uncertainty.

5.Regulatory Landscape and Policy Shifts

The UK water sector is undergoing significant transformation in regulatory response to public mounting environmental pressures, scrutiny, and the urgent need for long-term resilience. The regulatory landscape is shaped by a combination of statutory obligations, performance incentives, and evolving standards—particularly compliance around nutrient pollution and microbiological safety.

5.1 Phosphorus Discharge Regulation

Phosphorus is a key contributor to eutrophication, which depletes oxygen in water bodies and threatens aquatic ecosystems. Under the

Water Industry National Environment Programme (WINEP), water companies are now subject to tighter discharge limits, enforced through the PR24/AMP8 (2025–2030) investment cycle.

- Most wastewater treatment works (WwTWs) must comply with total phosphorus (TP) limits of 0.5 mg/L or below.
- In highly sensitive catchments such as Poole Harbour, the Technically Achievable Limit (TAL) is set at 0.25 mg/L (mean).
- These limits are designed to reduce nutrient loading and protect biodiversity, particularly in areas designated under the Habitats Directive and nutrient neutrality rules.

5.2 Microbiological Standards and Bathing Water Compliance

Microbiological safety is regulated under the Bathing Water Directive, which governs the classification of recreational waters based on the presence of E. coli and intestinal enterococci. These faecal indicator organisms are monitored over a four-year period to determine water quality ratings.

- In 2024, 8.2% of English bathing waters were rated 'poor', underscoring persistent challenges in controlling sewage pollution and agricultural runoff.
- Utilities are expected to implement robust microbiological control measures, including UV disinfection and enhanced monitoring, to meet compliance targets.

KEY TAKEAWAY

The UK water sector is undergoing a regulatory overhaul to address environmental degradation, public accountability, and future resilience. New discharge limits for phosphorus and stricter microbiological standards are reshaping compliance expectations, while PR24 and AMP8 frameworks tie performance directly to financial and legal consequences. With enforcement intensifying and policy shifting toward integrated, outcome-driven regulation, water companies must adapt through investment in advanced treatment technologies, transparent reporting, and alignment strategic with national climate and resource goals

5.Regulatory Landscape and Policy Shifts

5.4 PR24 and AMP8: A New Compliance Framework

The PR24 price review, administered by Ofwat, places environmental outcomes at the centre of investment planning. Water companies are required to:

- Demonstrate efficient compliance with discharge permits.
- Improve resilience to climate and population pressures.
- Provide transparent performance data to regulators and the public.

Failure to meet these expectations can result in financial penalties under Outcome Delivery Incentives (ODIs), reputational damage, and legal action.

5.5 Enforcement and Legal Risk

Regulatory enforcement has intensified in recent years. The Environment Agency and Ofwat have adopted a zero-tolerance approach to permit breaches, with consequences including:

- Criminal prosecution under environmental law.
- Multi-million-pound fines, such as the £122.7 million penalty issued to Thames Water in 2025 for widespread failures in sewage treatment.
- Automatic financial deductions from company revenues for non-compliance.

Since privatisation in 1989, English and Welsh water companies have faced over 1,100 criminal convictions and £160 million in fines, reflecting the scale of historic and ongoing violations.

5.6 Strategic Policy Shifts

The regulatory landscape is also being reshaped by broader policy developments:

- The Environment Act 2021 and Environmental Targets (Water) Regulations 2023 mandate an 80% reduction in phosphorus from treated wastewater by 2038, with interim targets for 2028.
- The Independent Water Commission, established in 2024, has recommended replacing Ofwat with a unified oversight body to streamline regulation and improve accountability.
- The National Framework for Water Resources, published by the Environment Agency, outlines a coordinated strategy to address the projected 5 billion litre daily shortfall by 2055

These shifts reflect a growing recognition that the current regulatory system is no longer fit for purpose and must evolve to meet the demands of climate change, population growth, and industrial transformation.

6.Economic Impact Analysis

Economic Impact Analysis

Water scarcity in the UK will have far-reaching economic consequences across multiple sectors. While operational risks have been acknowledged, quantifying these impacts underscores the urgency for coordinated action.

KEY TAKEAWAY

Water scarcity will impose significant economic costs across agriculture, energy, and manufacturing. Without intervention, losses could exceed £2 billion annually by mid-century, with GDP growth reduced by up to 0.3% per year. Rising operational costs, supply chain disruptions, and inflationary pressures highlight the urgent need for integrated water resilience planning. atment technologies, transparent reporting, and strategic alignment with national climate and resource goals

Agriculture

Projected Losses: Reduced irrigation capacity could lower crop yields by 10–20% in water-stressed regions, increasing reliance on imports and raising food prices. Cost Implications: Farmers may face higher costs for water abstraction permits and investment in on-farm storage and recycling systems.

Energy

Power Generation Risks: Thermal and nuclear plants depend on river water for cooling. Declining river flows could lead to output reductions, increasing wholesale electricity prices by an estimated 5–8% during peak demand periods.

Hydrogen and CCS: Additional water demand for industrial decarbonisation could raise operational costs by £150–£200 million annually by 2050.

Manufacturing and Industry

Production Disruptions: Water-intensive sectors such as food processing, pharmaceuticals, and chemicals may experience downtime or require costly retrofits for water recycling.

Economic Burden: Combined industrial losses could exceed £2 billion per year by mid-century if resilience measures are not implemented.

Macro-Economic Effects

GDP Impact: Modelling by the Environment Agency suggests water scarcity could reduce UK GDP growth by up to 0.3% annually by 2050.

Inflationary Pressure: Rising costs in food and energy sectors will feed into consumer price inflation, affecting household budgets and economic stability.

7. International Benchmarking: Lessons from Global Water Scarcity Responses

Comparing the UK's approach to other nations facing similar challenges provides valuable insights into best practices and innovative strategies.

Australia

Context: Frequent droughts and variable rainfall have driven aggressive water management reforms.

Key Measures:

- Large-scale desalination plants supplying major cities.
- Mandatory water efficiency standards for households and businesses.
- Advanced water trading markets to allocate resources efficiently.

Singapore

Context: Limited natural water resources and high urban density.

Key Measures:

- "Four National Taps" strategy: local catchment, imported water, NEWater (recycled), and desalination.
- Extensive investment in membrane technology for wastewater recycling.
- Public education campaigns promoting water conservation.

California, USA

Context: Chronic drought and competing agricultural and urban demands. Key Measures:

- Tiered water pricing to incentivise conservation.
- Groundwater management legislation to prevent over-extraction.
- Large-scale investment in stormwater capture and aquifer recharge.

Middle East

Context: Arid climate and limited freshwater sources.

Key Measures:

- World-leading desalination capacity.
- Drip irrigation technology reducing agricultural water use by up to 50%.
- Integrated water reuse systems for agriculture and industry.

Relevance for the UK

- Diversification of Supply: Adoption of desalination and advanced recycling technologies can complement existing infrastructure.
- Demand Management: Tiered pricing and water trading could incentivise efficiency.
- Public Engagement: Education campaigns and transparent reporting build trust and encourage behavioural change.
- Technology Transfer: Leveraging proven solutions like membrane filtration and precision irrigation can accelerate resilience.

8. Strategic Responses and Future Planning

The scale of the UK's water scarcity challenge—driven by climate change, population growth, and industrial decarbonisation—demands a coordinated, multi-decade response. Strategic planning is now central to national water policy, with regulators, utilities, and regional groups aligning around a shared ambition: to secure resilient, environmentally sustainable water supplies for future generations.

8.1 National Framework for Water Resources 2025

The Environment Agency's National Framework for Water Resources 2025 sets out a roadmap to

address the projected 5 billion litre daily shortfall by 2055. It calls for a twin-track approach:

- Demand Management: Reducing leakage, improving water efficiency, and promoting behavioural change among households and businesses.
- New Supply Options: Developing infrastructure such as reservoirs, desalination plants, and water recycling schemes.

The Framework emphasises the need for multi-sector solutions that integrate water planning across agriculture, energy, housing, and industry. It also highlights the importance of catchment-based approaches, where localised interventions—such as constructed wetlands and buffer zones—complement national infrastructure.

8.2 RAPID Programme: Infrastructure Development at Scale

The Regulators' Alliance for Progressing Infrastructure Development (RAPID), formed by Ofwat, the Environment Agency, and the Drinking Water Inspectorate, is overseeing the delivery of 28 Strategic Resource Options (SROs). These include:

- Large-scale water transfers between regions.
- New reservoirs to increase storage capacity.
- Desalination plants to convert seawater for industrial and public use.
- Advanced water recycling for non-potable applications.

RAPID's gated process ensures that each project meets environmental, technical, and financial criteria before progressing. The programme has unlocked £2 billion in development funding and is expected to catalyse £50 billion in long-term investment.

KEY TAKEAWAY

Securing the UK's future water resilience requires coordinated, long-term planning integrates climate that adaptation, infrastructure investment, and regulatory reform. Programmes like National Framework for Water Resources and RAPID are driving largescale infrastructure development, while PR24 and AMP8 embed environmental accountability into utility operations. With mounting pressures from climate population change, growth, decarbonisation, industrial strategic alignment across sectors and regions is essential to ensure reliable, sustainable water supplies beyond 2030.

8. Strategic Responses and Future Planning

8.3 PR24 and AMP8: Regulatory Alignment

Ofwat's PR24 price review and the AMP8 investment cycle (2025–2030) mark a decisive shift in regulatory expectations. Utilities are now required to:

- Deliver demonstrable environmental outcomes, including nutrient and microbiological compliance.
- Invest in real-time monitoring, online sensors, and transparent audit trails.
- Integrate catchment solutions into planning, such as upstream agricultural measures and nature-based interventions.

The Water Industry National Environment Programme (WINEP) sets the framework for these obligations, with tighter discharge consents and expanded monitoring regimes becoming the norm.

8.4 Long-Term Horizon: Beyond 2030

Looking beyond 2030, strategic planning will focus on:

- Quaternary treatment technologies to remove micropollutants.
- Year-round microbiological monitoring in inland waters.
- Integration of climate resilience into asset design and permitting.
- Cross-sector collaboration to align water planning with housing, energy, and biodiversity goals.

The Environment Act 2021 and Environmental Targets (Water) Regulations 2023 provide the legislative backbone for these ambitions, mandating an 80% reduction in phosphorus from treated wastewater by 2038.

As the UK confronts mounting pressures on its water infrastructure, decentralised and durable solutions are increasingly vital. Tricel Water, a division of the Tricel Group, offers a robust portfolio of products designed to support water resilience across domestic, commercial, and industrial sectors. These include advanced water storage tanks, efficient pumping systems, stormwater attenuation solutions, and wastewater treatment technologies, all engineered to meet regulatory standards and

KEY TAKEAWAY

Tricel's integrated water systemswater storage, spanning pumping, wastewater treatment, and stormwater management - embody engineering resilience delivering by reliable, regulation-compliant infrastructure across diverse site conditions. Designed address water scarcity, climate disruption, and decentralised needs, these systems support long-term sustainability and operational continuity residential, commercial, municipal applications.

7.1 Water Storage Tanks: Resilience in Supply

As the UK market leader in water <u>storage tanks</u>, Tricel provide a comprehensive range of Glass Reinforced Plastic (GRP) water tanks, known for their durability, corrosion resistance, and compliance with WRAS Regulation, LPCB, ISO 9001:

ONE PIECE TANKS

long-term sustainability goals.

With capacities from 45 to 16,000 litres, <u>one-piece tanks</u> are ideal for residential and small commercial applications. These tanks feature 25mm insulation, sealed lids, and inspection hatches for hygiene and maintenance.

SECTIONAL TANKS

Our <u>sectional tanks</u> are modular systems ranging from 1,000 to over 2 million litres, suitable for large-scale infrastructure, hospitals, schools, data centres and industrial facilities. These tanks are assembled on-site and can be customised for restricted spaces.

SPECIALISED TANKS

Tricel offer a comprehensive range of specialised tanks, including Totally Internally Flanged (TIF) tanks, as well as two-part tanks, ideal for restricted spaces for constrained installations.

FIRE SUPPRESSION & MISTING TANKS

Tricel's <u>LPCB-certified sprinkler tanks</u> are built to meet the highest standards of fire safety and performance. These tanks are used in conjunction with automatic sprinkler systems and wet riser installations, providing a reliable water source during fire emergencies. Capacities Range up to 1,300m³ and can be tailored to hazard classifications and system design. Compliance Standards: LPCB (LPS 1276), BS EN 12845, BS 9251.

COBINED TANK AND PUMP STATION (CTPS)

<u>CTPS</u> are a tidy and effective GRP water storage solution to provide customers with a durable long-term product. Each Tank includes a practical working space for water tank ancillaries, <u>including water pumps and electrical equipment</u>, making it a 2-in-1 solution suitable for internal and external applications.

Tricel tanks are used in potable water storage, rainwater harvesting, agricultural irrigation, and chemical containment. Their GRP construction ensures long-term performance even in harsh environments, reducing the risk of contamination and structural failure.

WATER TANK CALCULATORS

Tricel offers a suite of interactive sizing calculators to assist engineers, contractors, and facility managers in selecting the correct water tank for their specific requirements. These tools are designed to streamline the specification process and ensure regulatory compliance across domestic, commercial, and industrial applications.

Sectional and One-Piece Tank Calculator

- This tool allows users to input desired capacity, available installation space, and structural loading constraints. It outputs nominal, actual, and usable capacities, helping users identify the most suitable tank configuration for their site.
 - water tank capacity calculator
 - o Sectional and One Piece Tank Sizing Calculator

Sprinkler and Wet Riser Tank Calculator

- Developed to support fire safety system design, this calculator estimates effective capacity based on inlet size and tank dimensions. It aligns with LPCBcertified standards and supports compliance with BS EN 12845.
 - Sprinkler and Wet Riser Tank Size Calculator

Elvaro Tank Builder

- Tailored for pressure booster systems, this calculator helps size tanks and pumps based on flow rate, discharge pressure, and insulation requirements.
 - o Elvaro Tank Builder

These calculators are accessible via Tricel's <u>Calculator Tools Hub</u> and are supported by technical consultation services for bespoke projects. They are frequently used by M&E consultants, building services engineers, and procurement teams to ensure accurate sizing and efficient system design.

CPD-CERTIFIED TRAINING: SUPPORTING SPECIFICATION AND COMPLIANCE

Tricel provides Continuing Professional Development (CPD) courses designed to enhance the skills and regulatory knowledge of professionals involved in water storage, fire suppression, and wastewater management. These <u>CPD courses</u> are designed to assist in the career development of engineers, M&E consultants, architects and specifiers within the water tank industry.

Available CPD Courses

Sectional Tanks 101

- o Focus: Cold water storage tank configuration and specification.
- Format: Presentation guide, self-learning.
- o Duration: 2 hours.
- o Outcome: Improved specification accuracy and project success rates.

Space & Base Specification

- Focus: Avoiding site visit failures due to incorrect base access and space planning.
- o Format: Presentation guide, self-learning.
- Duration: 2 hours.
- o Outcome: Reduced delays and improved installation outcomes.

Register or learn more: Tricel CPD Courses

Certification Benefits

- Industry Recognition: Tricel's CPD certification is widely respected across the UK water sector.
- Regulatory Compliance: Courses cover WRAS, BS EN 13280, LPCB, and other standards.
- Technical Expertise: Training includes tank sizing, spatial constraints, and fire suppression system design.
- Project Efficiency: Helps reduce specification errors and improve installation timelines.

Explore certification details: CPD Certification Explained

7.2 Efficient Pumping Solutions: Enabling Access and Distribution

Tricel offers a robust and adaptable range of <u>pumping systems</u> designed to meet the diverse needs of residential, commercial, and industrial water management. These systems are engineered to ensure reliable water distribution, pressure regulation, and wastewater transfer, particularly in environments where gravity-fed drainage is not feasible.

BOOSTER SETS

Tricel's <u>booster sets</u> are tailored for consistent water pressure delivery in multistorey buildings, hospitals, and high-demand facilities. These systems incorporate:

- Multistage vertical or horizontal pumps for high flow rates.
- Fixed or variable speed control systems to maintain stable pressure.
- WRAS-approved components for potable water applications.

Our Booster set range offer compact, fully automatic pressure boosters ideal for domestic use, irrigation, and small commercial setups. These units integrate electronic control devices to prevent pressure fluctuations and ensure smooth operation.

SUBMERSIBLE AND MACERATOR PUMPS

Tricel's submersible and <u>macerator pumps</u> are designed for demanding applications such as:

- Sewage treatment plants
- Drainage systems
- Industrial fluid transfer

These pumps are available in single or twin configurations and are built to handle grey, storm, and foul water. The Domo series, for example, offers vortex impellers and high vertical output, making them suitable for installations with significant elevation differences.

PACKAGED PUMPING STATIONS

Tricel's <u>packaged pumping stations</u> are pre-assembled units that include chambers, pumps, pipework, valves, and control panels. They are ideal for:

- Residential developments
- · Commercial buildings
- Public infrastructure

These stations are available in multiple chamber sizes and configurations, including polyethylene and GRP options. They are designed to meet British Standards (e.g., BS EN 12050-2 and 12050-3) and can be installed during construction or retrofitted to existing buildings.

Applications

- Pumping wastewater from basements or outbuildings to treatment plants.
- Transferring treated effluent to remote locations.
- Managing surface and stormwater in low-lying areas.

Integration and Support

Tricel's pumping solutions are supported by:

- Technical expertise from in-house engineers and service teams.
- Customised design services to match site-specific requirements.
- Maintenance and repair contracts, including seal replacements and system overhauls.
- Integration with storage tanks and control systems, ensuring cohesive operation across water infrastructure.

The acquisition of Edincare Pumps has further strengthened Tricel's capabilities in the UK market, expanding its product range and technical support network.

7.3 Stormwater Management: Mitigating Flood Risk and Recharging Aquifers

Tricel's <u>stormwater management systems</u> are designed to address the dual challenge of urban flood prevention and groundwater replenishment. Through decentralised attenuation and infiltration technologies, these <u>systems</u> support sustainable urban development and compliance with environmental regulations.

TRICEL NERO STORMWATER RANGE

The Tricel NERO Range encompasses modular solutions for stormwater attenuation, infiltration, and retention. These systems are particularly effective in decentralised applications, where traditional drainage infrastructure may be limited or impractical.

TRICEL HYDROSTAR

<u>Hydrostor</u> is an underground system engineered to collect, store, and gradually infiltrate stormwater runoff. It reduces surface water accumulation, prevents flooding, and promotes aquifer recharge.

TRICEL RIGOFILL SYSTEMS

At the core of Tricel's offering is the <u>Rigofill system</u>, part of the NERO Range. These polypropylene modules are designed for underground installation and offer high-performance stormwater management.

 Rigofill ST-A and ST-S modules are compliant with EN 17152-1 and ISO 4981 standards, ensuring long-term durability and structural integrity under traffic loads up to HGV 60.

TRICEL CRATES AND CHAMBER

- Tricel Crates are modular components used for infiltration, retention, and storage. With a void ratio exceeding 96%, they maximise water volume capacity while minimising footprint. These crates are ideal for installation beneath car parks, retail parks, and housing schemes.
- Tricel Chambers offer underground solutions that enhance aquifer recharge and reduce surface runoff. Their HDPE construction ensures corrosion resistance and long-term reliability.

Applications

The system supports multiple applications:

- Infiltration: Facilitates percolation of water into the soil, aiding aquifer recharge.
- Retention: Temporarily stores stormwater to reduce peak flow into drainage systems.
- Harvesting: Enables reuse of collected water for irrigation, toilet flushing, and other non-potable uses.
- Fire Water Storage: Provides a reserve for emergency use, with inspection capabilities that allow system checks without draining.

Installation and Inspection

Tricel's systems are designed for ease of installation and maintenance:

- Modular Design: Allows flexible configuration to suit site-specific requirements.
- Camera-Accessible Inspection Tunnels: Enable thorough system checks using CCTV technology.
- Load-Bearing Capacity: Suitable for installation under trafficked areas with depths up to 6 metres.

Urban Integration and Planning Compliance

These systems are increasingly adopted in urban developments to meet planning regulations and environmental targets. The sponge city principle, which Tricel supports through its Rigofill systems, aims to restore the natural water cycle in built environments by capturing and reusing stormwater rather than diverting it into sewers.

Tricel's recent installations, such as the attenuation system at its Killarney headquarters, demonstrate the practical application of these technologies in real-world settings.

7.4. Wastewater Treatment: Recycling and Reuse

Tricel's wastewater treatment solutions—Novo, Tero, Maxus, and Vento—enable the safe and efficient processing of domestic and commercial effluent. These systems support water reuse for irrigation and non-potable applications, reducing reliance on freshwater sources.

- Low Maintenance & Cost-Effective: Systems use fixed-bed technology and shallow dig tanks, minimising installation and upkeep costs.
- Environmental Compliance: Certified to EN12566 standards, ensuring adherence to EU regulations and environmental protection.
- Localised solutions tailored to specific water scarcity challenges.

Applications

Residential Use

Tricel's domestic wastewater treatment systems are well-suited for individual households, providing reliable and environmentally responsible water disposal. These systems help maintain hygiene standards while protecting local ecosystems.

Commercial and Industrial Settings

Tricel's solutions are designed to handle the demands of commercial and industrial operations, including hospitality venues, food service establishments, and manufacturing sites. They offer dependable performance where high volumes of wastewater require consistent and effective treatment.

Municipal Infrastructure

For local authorities and public sector developments, Tricel delivers adaptable wastewater treatment systems that support growing communities. These installations assist in meeting regulatory requirements and environmental targets while ensuring long-term serviceability.

TRICEL NOVO TREATMENT PLANTS

Engineered to meet UK Building Regulations and Environment Agency discharge standards, these systems provide reliable and compliant wastewater treatment for residential and commercial applications. Their shallow-dig design and robust construction make them practical for a wide range of site conditions.

<u>Tricel Novo plants</u> operate through a three-stage purification system:

- Primary Settlement Chamber Separates solids from liquids through anaerobic breakdown.
- Aeration Chamber Uses fixed-bed technology and aerobic bacteria to digest pollutants.
- Final Settlement Chamber Removes residual sludge and returns it to the primary chamber via an airlift system.

This process ensures high treatment efficiency, with BOD removal rates exceeding 95%, meeting EN12566-3 standards.

Product Range and Specifications

The Novo range includes gravity and pumped outlet models, with capacities from 6 PE to 50 PE. Each model is tailored to suit site-specific needs:

- Gravity Outlet Models: Simplified installation for standard terrain.
- Integrated Pumped Outlet Models: Suitable for sites with low invert levels or where gravity discharge is not feasible.

Installation and Maintenance

- No Concrete Backfill Required: Most installations save up to €400 compared to GRP alternatives.
- Lightweight Design: Units weigh between 200–300 kg, simplifying transport and installation.
- Low Maintenance: No moving parts or pumps inside the tank; ceramic diffusers last twice as long as rubber equivalents.

Annual servicing includes de-sludging, diffuser checks, and performance reporting. The system is supported by Tricel's service network and technical documentation.

Tricel Novo Certification and Compliance

- EN12566-3 Certified
- CE Marked
- Tested by PIA GmbH in Germany over a 38-week period for structural integrity and treatment performance.

Applications

Tricel Novo is ideal for:

- Single dwellings
- Guest houses
- Schools
- · Small hotels
- Housing developments
- · Sites without access to mains drainage

TRICEL MAXUS & MAXUS COMBI RANGE (+50PE)

Tricel Maxus

- Multi-Tank Configuration: The standard <u>Maxus system</u> comprises separate tanks for settlement, buffering, biological treatment, and clarification. These tanks are installed individually and connected on-site.
- Flexible Layout: Ideal for sites requiring customised configurations, such as irregular terrain or phased installations.
- Installation Complexity: Requires more planning and space due to multiple components.
- Control System: Operated via the E-III control panel, managing pumps, blowers, and alarms.

Tricel Maxus Combi

- All-in-One Tank Design: The <u>Combi system</u> integrates the septic tank, buffer tank, biological treatment zone, and clarifier into a single compact unit, simplifying installation and reducing footprint.
- Model Variants:
 - Model A: High invert level (520mm), suitable for gravity-fed or pumped installations.
 - Model B: Low invert level (1620mm), ideal for sites where gravity flow is limited and pumping is not preferred.
- Plug & Play Setup: Requires only inlet, outlet, and power connection, making it faster to deploy.
- Control System: Uses the Tricel E-VI controller, which adjusts operation based on flow and includes GSM remote monitoring.
- Load Adaptability: Automatically adjusts to seasonal or constant loads, with power-saving mode during no-flow periods.
- Low Maintenance: No moving parts within the plant, long-life components, and simple operation.
- Effluent Quality: Proven SAF technology ensures high treatment performance across varying load conditions.

Technical Specifications

- Sizes: Available in multiple configurations (Combi 3A/B to Combi 9A/B), with tank volumes ranging from 7.4 to 23.3 m³ and buffer capacities up to 6 m³.
- Power Consumption: Ranges from 1.9 kWh/day at minimum load to 21.5 kWh/day at maximum load.
- Blowers: Integrated diaphragm blowers (e.g., 2 x 400 lpm) housed in a tech box with control panel.

TRICEL TERO TERTIARY SYSTEMS

The <u>Tricel TERO</u> is a modular tertiary treatment system designed to further purify effluent from secondary wastewater treatment plants, such as the Tricel NOVO. It is engineered for high-performance filtration, environmental compliance, and ease of installation across residential and small commercial sites.

Key Features

Natural Filtration Media

TERO uses coconut coir—a renewable, long-life material—to biologically, chemically, and physically treat wastewater. This natural medium eliminates the need for chemical additives and electrical components.

• Compact and Scalable Design

Each module supports up to 6 PE (Population Equivalent). Systems can be scaled by adding modules to accommodate larger populations, with configurations available up to 54 PE.

Plug-and-Play Installation

The system features a flat base and single inlet connection, allowing for rapid installation with minimal disruption. It is particularly suited to sites with high water tables, rocky terrain, or limited space.

No Desludging Required

The closed system design ensures odour control and high treatment efficiency without the need for desludging. Annual maintenance is recommended to inspect pipework and media levels.

Regulatory Compliance

Certified to EN12566-7, the TERO system meets stringent EPA standards, achieving E. coli levels below 1,000 cfu/100ml. This allows for reduced soil depth requirements (as low as 600mm), optimising installation flexibility.

Technical Specifications Integration and Compatibility

- Works Seamlessly with Tricel NOVO
- TERO is designed to receive effluent from Tricel NOVO systems via a pumped discharge with dose control. It can also be integrated with third-party treatment plants.
- Pressurised Distribution Network
- Effluent is evenly dispersed across the coconut fibre bed using a low-pressure pipe network, ensuring optimal treatment and media longevity

TRICEL PHOSCLEAR TERTIARY SYSTEMS

PhosClear is Tricel's dedicated <u>tertiary treatment system</u> designed to reduce phosphorus and E. coli levels in treated effluent. It is typically installed downstream of a primary treatment plant such as the Tricel Novo, and is suitable for both new builds and retrofit applications. The system addresses stringent discharge consent conditions without relying on chemical dosing, making it ideal for sensitive catchments and environmentally regulated sites.

How It Works

- Natural Adsorption Media: PhosClear uses Polonite®—a mineral-based filtration media sourced from Sweden. Four bags of Polonite are placed in each of the four treatment chambers.
- Flow Pattern: Wastewater flows alternately from top to bottom and bottom to top through the chambers, maximising contact time and adsorption efficiency.
- Annual Maintenance: Each year, the bags in the first chamber are replaced, and the remaining bags are rotated forward. This ensures consistent performance without complex servicing routines.

Performance

- Phosphorus Removal: Achieves up to 95% phosphorus reduction, with effluent concentrations as low as 0.8 mg/L, and in some configurations, ≤0.25 mg/L.
- E. coli Reduction: The Polonite media also acts as a disinfectant, reducing bacterial loads to below regulatory thresholds, typically <1 cfu/100 mL.
- No Chemical Dosing: Unlike ferric or alum-based systems, PhosClear operates without liquid chemicals, reducing operational costs and sludge handling requirements.

Installation and Configuration

- Plug-and-Play Design: Delivered fully assembled and tested, PhosClear connects directly to Tricel Novo or other treatment plants via standard 110mm PVC inlet and outlet pipes.
- Optional Pumped Outlet: For sites requiring elevation of treated water, a pumped outlet version is available.

Models Available:

- PhosClear Standard
- PhosClear Deep
- PhosClear + Riser (for deeper inlets)
- Capacity Range: Suitable for installations from 6 PE to 12 PE, with custom sizes available on request.

Compliance and Certification

- EN12566-7 Certified
- CE Marked
- Tested by PIA GmbH, Europe's leading wastewater technology institute.

Applications

PhosClear is ideal for:

- · Residential homes
- Small commercial sites
- Glamping and tourism facilities
- Environmentally sensitive zones

It is increasingly adopted in UK and Irish markets where nutrient neutrality and microbiological safety are critical.

TRICEL VENTO SEPTIC TANKS

The Tricel Vento is a high-performance septic tank solution designed for domestic dwellings and small commercial applications, supporting capacities from 6 to 20 PE (Population Equivalent). Manufactured using high-density polyethylene and advanced blow moulding technology, the Vento combines strength, durability, and lightweight construction to simplify transport and installation.

Key Features

- Low Profile Design
- The Vento is one of the shallowest tanks on the market, requiring minimal excavation. This makes it ideal for restricted or compact sites and reduces disruption during installation.
- · Lightweight and Durable

- Its polyethylene shell ensures long-term reliability while remaining easy to handle on-site. Most installations do not require concrete backfill, and gravel backfill is suitable for dry sites.
- Integrated Outlet Filter
- Each tank includes a built-in outlet filter system that enhances solids removal and protects the soakaway, extending its operational life.

Flexible Installation Options

- Optional risers (180mm each, up to three high) allow for deeper invert levels, accommodating varied site conditions. Risers are required on both inlet and outlet sides when used.
- Certified Performance
- All Vento tanks are EU Certified to EN12566-1, ensuring compliance with wastewater treatment standards across Ireland and the UK.

Tricel delivers a robust portfolio of water management systems that address the full lifecycle of water use—from collection and storage to treatment and discharge. Tricel's systems are engineered for reliability, regulatory compliance, and adaptability across varied site conditions—supporting both decentralised and large-scale infrastructure needs.

Conclusion

The United Kingdom faces a complex and evolving challenge in securing its water future. Climate change, population growth, industrial decarbonisation, and ageing infrastructure are converging to reshape the hydrological landscape and intensify pressure on water systems. Strategic responses must be grounded in integrated planning, resilient engineering, and adaptive policy frameworks that reflect regional disparities and sectoral interdependencies.

Tricel's integrated water systems—spanning storage, pumping, treatment, and stormwater management—offer practical, regulation-compliant infrastructure that supports decentralised resilience and long-term sustainability. As national frameworks and regulatory cycles such as PR24 and AMP8 drive investment and accountability, the alignment of technology, policy, and environmental stewardship will be critical.

This whitepaper underscores the urgency of coordinated action and the value of engineered solutions that anticipate future conditions. By embedding resilience into every stage of water management—from source to discharge—the UK can safeguard its water resources and infrastructure for generations to come.

REFERENCES

- Environment Agency. (2025). National Framework for Water Resources 2025: Water for Growth, Nature and a Resilient Future. <u>GOV.UK [gov.uk]</u>
- Environment Agency. (2025). CS-N0W: Future Water Resources Dataset Explorer. environment.data.gov.uk [environmen...ata.gov.uk]
- Frontiers in Water. (2024). Hydrological Modelling and River Flow Projections underUKCP18.
 - https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2024.1468855/fu
- Durham University. (2024). Water Demand Implications of Industrial Decarbonisation. https://www.durham.ac.uk
- Springer Nature. (2024). Regional Water Deficits and Technology Choices in CCS and Hydrogen. https://link.springer.com
- Institution of Civil Engineers. (2025). State of the Nation: Infrastructure and Climate Resilience. https://www.ice.org.uk
- Ofwat. (2025). RAPID Programme and Strategic Resource Options. https://www.ofwat.gov.uk
- Environment Agency. (2018). State of the Environment: Water Resources. <u>PDF Report [assets.pub...ice.gov.uk]</u>
- Water UK. (2022). Water 2050: A White Paper. PDF [water.org.uk]
- Met Office. (2025). Climate Change and Flood Risk Projections. https://www.metoffice.gov.uk
- Drainage Partnership. (2021). Urban Creep and Flash Flooding Report. [Drainage P...eport 2021]
- Water Briefing. (2025). Scenario-Based Planning for Water Demand. https://www.waterbriefing.org
- Parliamentary Office of Science and Technology. (2024). Groundwater Vulnerability and Aquifer Recharge. https://researchbriefings.parliament.uk
- UK Water Partnership (UKWP). Water Resilience Paper: Capitalising on Commercial Opportunities for UK PLC. January 2025. <u>UKWP Water Resilience Paper [theukwater...ership.org]</u>
- Environment Agency. National Framework for Water Resources 2025: Water for Growth, Nature and a Resilient Future. GOV.UK. <u>National Framework 2025 [gov.uk]</u>
- University of Oxford Environmental Change Institute. Freeman, A. (2024). Navigating Water-Related Risks in the UK: Climate, Infrastructure, and Resource Management for Resilience. Oxford Research Archive ora.ox.ac.uk
- Environment Agency. Summary Document: National Framework for Water Resources 2025. <u>EA Summary PDF [assets.pub...ice.gov.uk]</u>
- Springer Nature. Leonard, A. et al. (2025). The Changing Landscape of Water Resources Planning in England. Water Resources Management, Volume 39.
 <u>Springer Article [link.springer.com]</u>

FAQ: Water Scarcity in the UK by 2050 – Risks, Responses, and Tricel's Solutions

1. Why is water scarcity becoming a critical issue in the UK?

Water scarcity in the UK is driven by climate change, population growth, and the increasing demands of industrial decarbonisation. The country faces a significant risk of daily water shortfalls, with additional pressures expected from new technologies such as hydrogen production and carbon capture.

2. What are the main drivers of water scarcity in the UK?

- Climate volatility: Hotter, drier summers and shifting rainfall patterns reduce reliable water yields and increase demand.
- Population and economic growth: Urbanisation concentrates demand in already constrained areas.
- Industrial decarbonisation: New technologies and manufacturing processes require more water, often in regions already under stress.

3. How is climate change affecting UK water resources?

Climate change is altering rainfall patterns, reducing river flows, increasing drought frequency, and making groundwater reserves more vulnerable. Southern and eastern England are particularly at risk.

4. What is hydrological modelling and why is it important?

Hydrological modelling simulates how water moves through natural and engineered systems. It is essential for predicting water availability, flood risks, droughts, and the effects of climate change.

5. Which regions are most at risk of water shortages?

Southern and eastern regions of England face the greatest risk due to lower rainfall, higher population density, and limited natural water storage.

6. How does population growth impact water demand?

The UK's population is expected to exceed 71 million by 2055, with the largest increases in London and the South East. This growth will drive up demand for water in homes, agriculture, and industry.

7. What are the consequences of inaction?

If current trends continue without intervention, the UK could see more frequent water restrictions, ecological damage from over-abstraction, and economic disruption due to increased costs and reduced productivity.

8. How does industrial decarbonisation affect water demand?

Hydrogen production and carbon capture are water-intensive processes. The additional demand from these technologies could reach hundreds of millions of litres per day by 2050.

FAQ: Water Scarcity in the UK by 2050 – Risks, Responses, and Tricel's Solutions

9. What infrastructure vulnerabilities exist in the UK water sector?

The UK's water infrastructure is ageing, with limited capacity for transferring water between regions. Deferred maintenance, pollution incidents, and regulatory breaches are ongoing challenges.

10. What regulatory changes are shaping the sector?

The sector is undergoing a regulatory overhaul, with stricter discharge limits for phosphorus, tighter microbiological standards, and new frameworks that tie performance directly to financial and legal consequences.

11. What strategic responses are being implemented?

Key strategies include reducing leakage, improving water efficiency, promoting behavioural change, developing new reservoirs and desalination plants, and integrating water planning across sectors.

12. How do Tricel's modular systems support water resilience?

Tricel provides integrated solutions for water storage, pumping, stormwater management, and wastewater treatment. These systems are designed for reliability, compliance, and adaptability to different site conditions.

13. What types of water storage tanks does Tricel provide?

- One-piece tanks: For residential and small commercial use.
- Sectional tanks: Modular systems for large-scale infrastructure.
- Specialised tanks: For installations with space constraints.
- Fire suppression tanks: Certified for safety and compliance.

14. What support does Tricel offer for specification and compliance?

Tricel offers CPD-certified training courses for professionals, covering tank sizing, spatial planning, fire suppression system design, and regulatory standards.

15. How does Tricel address stormwater management and flood risk?

Tricel's stormwater management systems use modular attenuation and infiltration technologies to prevent urban flooding and support groundwater replenishment. Their systems are suitable for installation under trafficked areas and comply with relevant standards.

16. What wastewater treatment solutions are available?

Tricel's Novo, Tero, Maxus, and Vento systems process domestic and commercial effluent, supporting water reuse and environmental compliance.

17. Where can I find more information or technical support?

For more information or technical support, visit <u>Tricel Water's website</u> or contact Tricel's Technical Team on Tel: +44 01934 421477

Glossary

Aquifer Recharge

The process by which water from precipitation or surface sources infiltrates the ground and replenishes underground water reservoirs (aquifers).

AMP8

The eighth Asset Management Period (2025–2030) for UK water utilities, focusing on investment and compliance.

BOD (Biochemical Oxygen Demand)

A measure of the amount of oxygen required by aerobic microorganisms to break down organic matter in water.

Catchment

An area from which rainfall flows into a river, lake, or reservoir.

CCUS (Carbon Capture, Utilisation, and Storage)

Technologies that capture carbon dioxide emissions from industrial sources and store or reuse them.

Combined Sewer Overflow (CSO)

A system that collects both wastewater and stormwater, which can overflow during heavy rainfall, causing pollution.

Decarbonisation

The process of reducing carbon emissions, often through technological innovation in industry and energy.

Demand Management

Strategies to reduce water use, improve efficiency, and promote behavioural change among users.

Environment Agency

The UK government body responsible for environmental protection and water resource management.

Hydrological Modelling

The simulation of water movement, distribution, and quality within natural and engineered systems.

Invert Level

The elevation of the bottom (invert) of a pipe or tank, important for gravity-fed systems.

LPCB (Loss Prevention Certification Board)

A certification body for fire protection products, including water tanks.

Maxus/Maxus Combi

Tricel's modular and all-in-one wastewater treatment systems for medium to large-scale applications.

Microbiological Compliance

Meeting standards for the presence of bacteria (e.g., E. coli) in treated water.

Glossary

Novo

Tricel's range of CE-certified wastewater treatment plants for domestic and light commercial use.

PhosClear

Tricel's tertiary treatment system for phosphorus and E. coli removal using Polonite® media.

Population Equivalent (PE)

A unit representing the average water or wastewater load generated by one person.

PR24

Ofwat's 2024 Price Review, setting investment and compliance expectations for water utilities.

Quaternary Treatment

Advanced water treatment processes to remove micropollutants and achieve higher discharge standards.

Resilience

The ability of water systems to withstand and recover from disruptions such as droughts, floods, or infrastructure failures.

Rigofill

Tricel's modular stormwater attenuation system for infiltration, retention, and harvesting.

Sectional Tank

A modular water storage tank assembled on-site from panels, suitable for large-scale applications.

SHETRAN

A physically-based hydrological modelling system used for UK catchment studies.

SuDS (Sustainable Drainage Systems)

Approaches to managing stormwater that mimic natural processes, reducing runoff and promoting infiltration.

Tero

Tricel's modular tertiary wastewater treatment system using coconut coir media.

Vento

Tricel's high-performance septic tank range for domestic and small commercial use.

WRAS (Water Regulations Advisory Scheme)

A UK certification for products that comply with water supply regulations.

